Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(5): 1378-1385, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866255

RESUMO

The concept of selective tumor targeting using nanomedicines has been around for decades; however, no targeted nanoparticle has yet reached the clinic. A key bottleneck is the non-selectivity of targeted nanomedicines in vivo, which is attributed to the lack of characterization of their surface properties, especially the ligand number, thereby calling for robust techniques that allow quantifiable outcomes for an optimal design. Multivalent interactions comprise multiple copies of ligands attached to scaffolds, allowing simultaneous binding to receptors, and they play an important role in targeting. As such, 'multivalent' nanoparticles facilitate simultaneous interaction of weak surface ligands with multiple target receptors resulting in higher avidity and enhanced cell selectivity. Therefore, the study of weak binding ligands for membrane-exposed biomarkers is crucial for the successful development of targeted nanomedicines. Here we carried out a study of a cell targeting peptide known as WQP having weak binding affinity for prostate specific membrane antigen, a known prostate cancer biomarker. We evaluated the effect of its multivalent targeting using polymeric NPs over its monomeric form on the cellular uptake in different prostate cancer cell lines. We developed a method of specific enzymatic digestion to quantify the number of WQPs on NPs having different surface valencies and observed that increasing valencies resulted in a higher cellular uptake of WQP-NPs over the peptide alone. We also found that WQP-NPs showed higher uptake in PSMA over-expressing cells, attributed to a stronger avidity for selective PSMA targeting. This kind of strategy can be useful for improving the binding affinity of a weak ligand as a means for selective tumor targeting.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159744

RESUMO

Nanomedicine involves the use of nanotechnology for clinical applications and holds promise to improve treatments. Recent developments offer new hope for cancer detection, prevention and treatment; however, being a heterogenous disorder, cancer calls for a more targeted treatment approach. Personalized Medicine (PM) aims to revolutionize cancer therapy by matching the most effective treatment to individual patients. Nanotheranostics comprise a combination of therapy and diagnostic imaging incorporated in a nanosystem and are developed to fulfill the promise of PM by helping in the selection of treatments, the objective monitoring of response and the planning of follow-up therapy. Although well-established imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), are primarily used in the development of theranostics, Optical Imaging (OI) offers some advantages, such as high sensitivity, spatial and temporal resolution and less invasiveness. Additionally, it allows for multiplexing, using multi-color imaging and DNA barcoding, which further aids in the development of personalized treatments. Recent advances have also given rise to techniques permitting better penetration, opening new doors for OI-guided nanotheranostics. In this review, we describe in detail these recent advances that may be used to design and develop efficient and specific nanotheranostics for personalized cancer drug delivery.

3.
Biomark Med ; 9(12): 1331-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26612591

RESUMO

Over the last decade, compelling evidence has shown that cancer stem cells (CSCs) exist in a variety of malignancies. The conventional method for anticancer therapy involves targeting only the proliferating mitotic cells, sparing the slow-cycling cells that eventually evade chemotherapy and become a source of post therapy relapses. With the increasing awareness of CSCs supported by sophisticated experimental evidence, therapeutic strategies today are aimed at selectively identifying and targeting CSCs using biomarkers. The ability to identify CSCs allows targeted elimination of these cancer-initiating cells. Herein, we discuss CSC markers in the context of different types of cancers, their significance in selectively identifying CSCs and the therapeutic implications of using these biomarkers to prevent invasion and metastasis of cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Humanos , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...